Hierarchically porous 3D-printed akermanite scaffolds from silicones and engineered fillers
نویسندگان
چکیده
منابع مشابه
Hierarchically engineered fibrous scaffolds for bone regeneration.
Surface properties of biomaterials play a major role in the governing of cell functionalities. It is well known that mechanical, chemical and nanotopographic cues, for example, influence cell proliferation and differentiation. Here, we present a novel coating protocol to produce hierarchically engineered fibrous scaffolds with tailorable surface characteristics, which mimic bone extracellular m...
متن کاملControl of Nanoparticle Release Kinetics from 3D Printed Hydrogel Scaffolds
The convergence of biofabrication with nanotechnology is largely unexplored but enables geometrical control of cell-biomaterial arrangement combined with controlled drug delivery and release. As a step towards integration of these two fields of research, this study demonstrates that modulation of electrostatic nanoparticle-polymer and nanoparticle-nanoparticle interactions can be used for tunin...
متن کاملIncreased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration
Background: One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using 3D-printing. Herein, we aimed to determine whether the much tighter control of microstructure of 3DP PLGA/β-TCP scaffolds is more effective in promoting osteogenesis than por...
متن کاملHigh-resolution direct 3D printed PLGA scaffolds: print and shrink.
Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for...
متن کامل3D Powder Printed Bioglass and β-Tricalcium Phosphate Bone Scaffolds
The use of both bioglass (BG) and β tricalcium phosphate (β-TCP) for bone replacement applications has been studied extensively due to the materials' high biocompatibility and ability to resorb when implanted in the body. 3D printing has been explored as a fast and versatile technique for the fabrication of porous bone scaffolds. This project investigates the effects of using different combinat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the European Ceramic Society
سال: 2019
ISSN: 0955-2219
DOI: 10.1016/j.jeurceramsoc.2019.06.021